Math 103 Day 6: Derivative Rules

Ryan Blair

University of Pennsylvania
Tuesday September 28, 2010

Outline

(1) Derivative Rules

Formula 1: When c is a constant

$$
\frac{d}{d x}(c)=0
$$

Formula 2:

$$
\frac{d}{d x}(x)=1
$$

Formula 3: When n is a positive integer,

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Formula 3: When n is a positive integer,

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

fact: $(x-a)^{n}=(x-a)\left(x^{n-1}+a x^{n-2}+a^{2} x^{n-3}+\ldots+a^{n-2} x+a^{n-1}\right)$

Formula 4:(General Power Rule) When n is any real number,

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Formula 5: If c is a constant and f is differentiable, then

$$
\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))
$$

Formula 6:(Sum Rule)If g and f are differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
$$

Formula 7:(Difference Rule)If g and f are differentiable, then

$$
\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]
$$

Formula 8:(Product Rule) If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}(g(x))+g(x) \frac{d}{d x}(f(x))
$$

Formula 9:(Quotient Rule) If f and g are differentiable, then

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}(f(x))-f(x) \frac{d}{d x}(g(x))}{(g(x))^{2}}
$$

Theorem

If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.

Theorem

If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
This is challenging to prove, so we need some lemmas.

Theorem
If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
This is challenging to prove, so we need some lemmas.
Lemma

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
$$

Lemma

$$
\lim _{\theta \rightarrow 0} \frac{(\cos (\theta)-1)}{\theta}=0
$$

